Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(R, S)-2,2'-(Ethane-1,2-diyldiiminio)dibutan-1-ol dinitrate

Guo-Yi Bai, ${ }^{\text {a* }}$ Chen-Fang Zhang, ${ }^{\text {a }}$ Jim Simpson, ${ }^{\text {b }}$ Hui-Sen Ning ${ }^{\text {a }}$ and Hong-Wei Peng ${ }^{\text {a }}$
${ }^{\text {a }}$ College of Chemistry and Environmental Science, Hebei University, Hebei 071002, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand

Correspondence e-mail: baiguoyi@hotmail.com

Key indicators

Single-crystal X-ray study
$T=113 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.060$
$w R$ factor $=0.158$
Data-to-parameter ratio $=17.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

The asymmetric unit of the title compound, $\mathrm{C}_{10} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{2+}$.$2 \mathrm{NO}_{3}{ }^{-}$, comprises one half of an N -diprotonated (R, S) ethambutol cation, which lies about a centre of symmetry, and a nitrate anion. In the crystal structure, a two-dimensional network is formed via intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The title compound, (I), is a nitrate salt of (R, S)-ethambutol (Bai, Zhang, Zhang et al., 2006). It is derived from the meso form of (S,S)-ethambutol (Bai, Zhang, Qin et al., 2006), which is a key intermediate for the synthesis of ethambutol hydrochloride, a widely used chiral antitubercular agent (Fadnavis et al., 1999). The cation, protonated on both N atoms, lies about a centre of inversion located at the mid-point of the central C C bond (Fig. 1). Bond lengths and angles are normal (Allen et al., 1987) and similar to those found in the neutral (R, S) molecule (Bai, Zhang, Zhang et al., 2006) and in the isomeric chiral (S, S)-cation (Bai, Ning et al., 2006).

In the crystal structure, the two nitrate anions form N1$\mathrm{H} \cdots \mathrm{O} 2$ hydrogen bonds to the protonated N atoms (Fig. 1). Further stabilization is provided by an extensive network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2 and Table 1), forming layers parallel to the $a c$ plane. The layers are further linked through hydrogen bonding to the nitrate anions.

Experimental

The title compound was prepared by the reaction of nitric acid with (R, S)-ethambutol. Colourless single crystals of (I) were grown by slow evaporation of a methanol solution.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{NO}_{3}{ }^{-}$	$Z=4$
$M_{r}=330.35$	$D_{x}=1.305 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, C2/c c	Mo $K \alpha$ radiation
$a=23.350(5) \AA$	$\mu=0.11 \mathrm{~mm}^{-1}$
$b=5.5367(11) \AA$	$T=113(2) \mathrm{K}$
$c=13.167(3) \AA$	Block, colorless
$\beta=99.03(3)^{\circ} \AA$	$0.20 \times 0.12 \times 0.06 \mathrm{~mm}$
$V=1681.2(6) \AA^{3}$	

Received 5 November 2006 Accepted 8 November 2006

Data collection

Rigaku Saturn CCD diffractometer ω scans
Absorption correction: multi-scan (Jacobson, 1998)

$$
T_{\min }=0.978, T_{\max }=0.990
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.158$
$S=1.12$
1989 reflections
111 parameters
H atoms treated by a mixture of independent and constrained refinement

6205 measured reflections 1989 independent reflections 1321 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.055$
$\theta_{\text {max }}=27.9^{\circ}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0666 P)^{2}\right. \\
& +0.2435 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.20 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.12 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0105 \text { (18) }
\end{aligned}
$$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2$	0.92 (2)	1.92 (2)	2.817 (2)	165.5 (18)
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.90 (2)	2.47 (2)	3.046 (2)	122.3 (16)
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 4^{\mathrm{i}}$	0.90 (2)	1.99 (2)	2.888 (2)	172.4 (19)
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 4^{\text {ii }}$	0.86 (3)	2.34 (3)	3.012 (3)	136 (3)
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 3^{\text {ii }}$	0.86 (3)	2.25 (3)	3.090 (3)	169 (3)

Symmetry codes: (i) $x, y-1, z$; (ii) $x,-y+1, z+\frac{1}{2}$.
H atoms on N and O atoms were located in a difference Fourier map and then refined freely with their displacement parameterss tied to $1.2 U_{\text {eq }}(\mathrm{N})$ and $1.5 U_{\text {eq }}(\mathrm{O})$. Other H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}, \mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ for CH_{2} and $\mathrm{C}-\mathrm{H}=0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}_{3} \mathrm{H}$ atoms.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

Financial support by the Science Project of the Hebei Education Department (grant No. 2005350) and the Science Foundation of Hebei University (grant No. 2005046) is gratefully acknowledged.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bai, G.-Y., Ning, H.-S., Simpson, J., Qin, X.-Y. \& Li, N. (2006). Acta Cryst. E62, o4567-o4568.
Bai, G.-Y., Zhang, C.-F., Qin, X.-Y., Zhang, Y.-C. \& Zeng, T. (2006). Acta Cryst. E62, o4222-o4223.
Bai, G.-Y., Zhang, C.-F., Zhang, Y.-C., Zeng, T. \& Li, J.-S. (2006). Acta Cryst. E62, o2173-o2174.
Bruker (2001). SHELXTL. Version 6.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Fadnavis, N. W., Sharfuddin, M. \& Vadivel, S. K. (1999). Tetrahedron Asymmetry, 10, 4495-4500.

Figure 1
The molecular structure of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids. Unlabeled atoms are related to the labeled atoms by the symmetry code $(1-x,-y, 1-z)$. Dashed lines indicate hydrogen bonds.

Figure 2
Packing diagram for (I), with hydrogen bonds shown as dashed lines.

Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2005). CrystalClear. Version 1.36. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

